陳誠亮教授開授之課程

Prof. Cheng-Liang Chen's Course

程序控制 Process Control

說明程序控制的基本原理,簡介化工程序中常見的程序控制方式,另外並特別強調各類實用控制策略,以及化工操作單元之程序控制。

課程目標:
1. 能了解程序控制基本原理及初步認知常用之程序控制方式
2. 熟悉動態模式之建模技術,熟悉低階線性動態模式行為及其鑑別技術
3. 了解比例、積分、微分控制器基本原理
4. 熟悉閉環系統之動態特性與穩定性分析技術
5. 熟悉比例、積分、微分控制器之調諧技巧
6. 了解頻率應答分析技術及其應用
7. 了解串級控制、凌駕控制、比例控制、前饋控制等實用控制方法之基本原則與應用
8. 能使用Matlab及SIMULINK軟體工具模擬控制系統動態


This course will present an introduction to process dynamics and control. Students will learn how to construct dynamic models of process systems, how to analyze process dynamics using Laplace transforms and transfer functions, the characteristic responses of dynamic processes, and the design and implementation of feedback control. Students will also learn to use computer software to model process dynamics and control.

Course Outlines

  1. Overview of Process Dynamics and Control

  2. Basic Control Elements: Processes (+Simulink)

  3. Basic Control Elements: Controller (+Simulink)

  4. Basic Control Elements: Sensor (+Simulink)

  5. Basic Control Elements: Valve (+Simulink)

  6. Dynamic Simulation of Basic Elements & Closed-loop Control

  7. Analysis of Feedback Control (+Simulink)

  8. Tuning PID Controller Parameters (+Simulink)

  9. Frequency Response Techniques

  10. Enhanced PID Control: Cascade (+Simulink)

  11. Enhanced PID Control: Selective & Override

  12. Enhanced PID Control: Feedforward

  13. Enhanced PID Control: Ratio and Others

  14. Multivariable Process Control

  15. Control of Some Unit Processes

  16. Plantwide Process Dynamics and Control


Course Objectives:

  1. Construct dynamic models of chemical processes

  2. Solve differential equations using Laplace transforms.

  3. Build and analyze transfer function and state-space models

  4. Understand the dynamic response of representative processes

  5. Develop empirical dynamic process models

  6. Implement and tune PID controllers

  7. Use frequency response methods to analyze processes and design controllers.

  8. Understand and implement Feed-forward, ratio, cascade and multi-variable control.

程序設計 Process Design

程序設計課程整合大學部化工專業科目,進行化工程序設計。


課程大綱:

1. 化工程序設計序論 Introduction to chemical process design
1. The nature of chemical industry
2. The importance of chemical engineering process design
3. The state-of-art of chemical process design

2. 程序合成與流程圖 Chemical process synthesis and process flowsheet
1. Chemical process synthesis
2. Heuristic rules and sequencing of separation processes
3. Chemical engineering process flowsheets
4. Hierarchy of process flowsheet

3. 電腦輔助程序設計 Computer-aided process design
1. The principles of computer-aided process design
2. Process simulation using Aspen Plus software
3. Data base and data regression

4. 程序整合與綠色製程 Process integration
1. The concept of pinch technology
2. Heat exchanger network design
3. Utility system and heat integration
4. Water minimization
5. Residual curves and distillation system design

5. 裝置選擇與設計 Equipment selection and design
1. The basic principles of equipment selection
2. Heuristic rules for equipment design and selection
3. Selection and design of heat transfer equipments
4. Selection and design of separation equipments

6. 程序控制 Process Control
1. Basic principles of control system
2. Advanced control systems
3. Design rules of control systems

7. 程序之經濟評估 Economic evaluation of a process
1. Principles of economic evaluation
2. Steps of economic evaluation
3. Estimations for capital and operation costs
4. Estimation of total product cost and profitability

8. 程序最適化 Process Optimization
1. Definitions of optimization problems
2. Methods for process optimization
3. Dominant design variables
4. Design example of a recycle plant
5. Flowsheet optimization

9. 結論 Overall
1. Future trend of process system engineering
2. Ethics and professionalism
3. Report writing


課程目標:

  1. 教導學生瞭解程序設計的目的與方法。

  2. 教導學生瞭解程序流程的設計原則,以及應用電腦輔助設計的技術。

  3. 教導學生瞭解程序節能的觀念,以及應用於製程設計的方法。

  4. 教導學生如何選擇化工程序中之裝置,以及設計其規格。

  5. 教導學生瞭解程序控制原理,以及應用於程序設計中的方法。

  6. 教導學生瞭解化工程序之經濟評估方法。

  7. 教導學生瞭解化工程序之最適化設計。

化工程序設計實作 Chemical Engineering Process Design Practice

期望同學活用化學工程課程之核心能力,如質能均衡、物理及有機化學、單元操作、化工熱力、反應工程及程序設計等知識,以解決工程實務問題為目標,建立一整廠程序的流程,進而熟悉Aspen Plus軟體以進行製程模擬,然後將此程序最適化,並進行裝置設計,且完成製程的經濟評估。同學以小組方式,通過每周輪流做進度報告,報告過程做深度討論,完成一化工程序的設計、模擬、流程最佳化及製程經濟評估。

能源工程 Energy Engineering

能源工程課程主要目標是使學生了解各項能源科技、能源與環境變遷,尤其再生能源與能源儲存技術相關議題,包括台灣能源概況、探討能源議題時的基本工程素養、全球主要國家的能源使用情形、傳統石化能源(煤炭、天然氣)的使用對於環境的影響等,也將介紹各式發電技術、現況、未來發展,包括燃煤發電、燃氣發電、核能發電、風力發電、太陽熱能及發電、水力發電、海洋能發電、地熱發電、生質能及發電等,另外也將介紹電動車、電能儲存等技術與發展現況。

Part 1 Background
Chapter 1: Basics for Mastering Energy
Chapter 2: World Energy Use – Past, Present, and Future including Energy Situation in Taiwan

Part 2 Fossil Fuels
Chapter 3: Fossil Fuel Resources and Use
Chapter 4: Environmental Consequence of Fossil Fuel Use

Part 3 Nuclear Energy
Chapter 5: Some Basic Nuclear Physics
Chapter 6: Energy from Nuclear Fission
Chapter 7: Energy from Nuclear Fusion (skip)

Part 4 Renewable Energy
Chapter 16: Biomass Energy
Chapter 11: Hydroelectric Energy and Energy Storage
Chapter 10: Wind Energy
Chapter 8: Solar Energy – Direct Use
Chapter 9: Solar Energy – Electricity Generation
Chapter 15: Geothermal Energy 14: Ocean Thermal Energy 12: Wave Energy 13: Tidal Energy

Part 5 Energy Conservation, Hydrogen, Transportation
Chapter 17: Energy Conservation
Chapter 19: Hydrogen Energy and Energy Storage / Battery Electric Vehicles

Part 6 Some Possible Guest Lecturers
Special Topics – Smart Grid; Gas Hydrate, Carbon Capture/Use/Storage . . .

AI在化工的應用(合授) The Application of AI in Chemical Engineering

Course Outlines

  1. AI Milestones

  2. AI Basics

  3. AI in Reaction Engineering

  4. AI in Process Systems Engineering

  5. AI in Spectroscopy Analysis and Semiconductor Industry

  6. AI in Materials Discovery

  7. AI in Molecular Design

程序最適學 Process Optimization

說明程序最適化的基本原理,簡介化工程序中常見的程序最適化策略。

課程大綱:

  1. 最適化問題基本要素

  • 介紹化工程序最適化應用案例

  • 了解最適化問題中的變數、目標、限制

  1. 最適化解之基礎觀念

  • 介紹Kurn-Tucker Condition

  1. 最適化問題主要求解方法

  • 線性規劃問題與主要求解方法

  • 非線性規劃問題與主要求解方法

  • 混合整數線性/非線性規劃問題與主要求解方法

  1. 狹點分析法及其應用

  • 程序合成與程序整合

  • 狹點分析法基本概念及其應用

  1. 數學規劃法於程序整合問題上的應用

  • 熱交換器網路設計

  • 質交換器網路設計

  • 用水網路設計

  1. Matlab Optimization Toolbox 及 GAMS

  • 能使用Matlab Optimization Toolbox求解最適化問題

  • 能使用GAMS軟體工具求解最適化問題


課程目標:
1. 了解最適化問題基本要素:變數、目標、限制
2. 熟悉最適化解之基礎觀念,如KKT原理
3. 熟悉線性規劃問題、非線性規劃問題、混合整數線性/非線性規劃問題基本原理與主要求解方法
4. 熟悉狹點分析法並應用於程序整合問題,包括熱交換器網路設計、質交換器網路設計用水網路設計等
5. 熟悉數學規劃法於程序整合問題上的應用,包括熱交換器網路設計、質交換器網路設計用水網路設計等
6. 能使用Matlab Optimization Toolbox及GAMS軟體工具求解最適化問題

高等化工應數(二) Advanced Applied Mathematics (II)

課程大綱:

  1. 資料彙整與呈現 Data Summary & Presentation

  • 非時變數據之呈現 Time-independent plots

  • 時變數據之呈現 Time-dependent plots

  • 樣本平均與變異 Sample mean & sample variance

  1. 隨機變數與機率分佈 Random Variables and Probability Distributions

  • 隨機變數之基本性質 Basic definitions

  • 離散型的隨機變數 Discrete random variables

  • 連續型的隨機變數 Continuous random variables

  1. 單一樣本的決策 Decision Making for a Single Sample

  • 參數估計 Parameter estimation

  • 假說檢定 Hypothesis testing

  • 適合度檢定 Testing for Goodness of Fit

  1. 二個及多個樣本的決策 Decision Making for Two or More Samples

  • 關於兩族群均值的推論:變異已知 Inference on the means of two populations, variance known

  • 關於兩族群均值的推論:變異未知 Inference on the means of two populations, variance unknown

  • 變異分析 Analysis of variance

  1. 經驗模式的建立 Building Empirical Models

  • 單變數迴歸 Simple linear regression

  • 多變數迴歸 Multiple linear regression

  • 模式建立與選手 Model construction and selection

  • 非線性迴歸簡介 Brief introduction of nonlinear models

  1. 實驗設計法及其在化工上的應用 Experimental Design in Chemical Engineering

  • 因次分析 Factorial design

  • 2k規劃 2k design

  • 實驗設計法在化工上的應用 Applications in Chemical Engineering


課程目標:

  1. 認識統計學在工程領域中所扮演的角色及其應用範圍

  2. 能夠正確、有系統地整理經由實驗或收集所獲得的數據

  3. 了解隨機現象的來源,並以隨機變數描述、闡釋、與模擬

  4. 了解一般常見的隨機變數及其應用

  5. 具備參數估計與假說檢測的能力

  6. 具迴歸分析、模型建立、與模型選擇的能力

  7. 了解實驗設計法的原理並強調實驗設計法在化學工程領域上的應用


Course Objectives:

  1. Understand the role that Statistics plays in chemical engineering disciplines

  2. Capable of systematically and adequately summarizing and reporting experimental data

  3. Understand the nature of a random process/phenomenon and capable of describing and simulating them

  4. Familiar with typical random variables and their applications

  5. Capable of conducting parameter estimation and hypothesis testing

  6. Capable of conducting regression analysis, model construction, and model selection

  7. Understand basic principles of experimental design, emphasize the applications in chemical engineering